Games, Graphs, and machines

- Read wattle.
- Watch pre lec videos & do reading
- Join Zulip

1.7 Exercises

- 1.7.1 Write down the cardinality of the following sets:
 - 1. $\{\} = \phi$ size 0
 - 2. {{}}
 - 3. {{}, {{{}}}}

5

elements sep by commas

- 1. No elements
- 2. The only elt is {} -> 1
- 3. $E165: \phi, \S \phi \S = 2$

1.7 Exercises

1.7.1 Write down the cardinality of the following sets:

- 1. {}
- 2. {{}}
- 3. {{}, {{{}}}}

1.7.2 True or false?

True $1. \{\} \subset \}$ anything C = IS a subset of talse $2. \} \in \{\}$ anything E = IS an elt of $\{\} \subset \{\} \in \{\}\}$ both true.

The cardinality of the power set

4 What is the size of the power set of $\{1, 2, 3, 4\}$? What about $\{1, 2, 3, 4, 5\}$? What about $\{1, \dots, 100\}$?

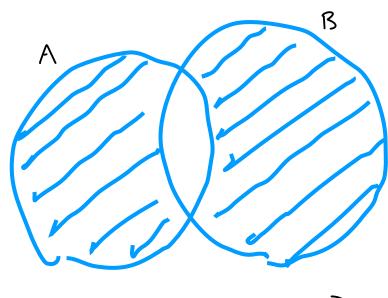
Pow ({1,2,3,4}) = } Ø, {i}, {2}, }il, \$4}, $\{1,2\}, \{1,3\}, \{1,4\}, \dots$

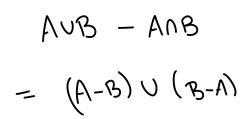
of \$1,2,3,43

{1,2,3,4}

2 subsets of 31,2,..., n}

1.7.4 The cardinality of the power set (continued)


Suppose the size of A is n. What is the size of the power set of A? Why?


2 r

The symmetric difference 1.7.5

Suppose A and B are represented by the circles below. Using the operations of union, intersection, and difference, express the shaded set.

∪ , ∩ ,

1.7.6 Set operations

Let $A = \{x^2 \mid x \in \mathbf{Z}\}$ and $B = \{x^3 \mid x \in \mathbf{Z}\}$. Write the smallest 5 elements of

- 1. $A \cup B$
- 2. $A \cap B$
- 3. A B
- 4. B-A

1.7.7 Set operations (continued)

Is the following true or false: |A - B| = |A| - |B|.

If it is true, explain why.

If it is not true, give a counter-example.

$$A = \begin{cases} 3 & 3 \\ 4 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A - B = \begin{cases} 3 & 3 \\ 3 & 3 \end{cases}$$

$$A -$$